Math 10A
Worksheet, Midterm II Review; Thursday, 7/19/2018
Instructor name: Roy Zhao

1 FTC

1. TRUE False $\int_{0}^{x} e^{t^{2}} d t$ is an antiderivative of $e^{x^{2}}$.

Solution: This is true by FTC II. The derivative of $\int_{a}^{x} e^{t^{2}} d t$ is $e^{x^{2}}$ by FTC II. But, there is no way to write it in terms of elementary functions.
2. If $\int_{0}^{x} f(t) d t=\frac{1}{2} \cos (2 x)-a$, find f, a.

Solution: Take the derivative of both sides with respect to x to get that $f(x)=$ $-\sin (2 x)$. Then we plug this back in to get

$$
\int_{0}^{x} f(t) d t=\int_{0}^{x}-\sin (2 t) d t=\left.\frac{1}{2} \cos (2 t)\right|_{0} ^{x}=\frac{1}{2} \cos (2 x)-\frac{1}{2} \cos (0) .
$$

So $a=\frac{1}{2} \cos (0)=\frac{1}{2}$.
3. Find the derivative of $\int_{\pi}^{x} \sec (t) d t$.

Solution: $\sec (x)$.
4. Find the derivative of $\int_{\pi}^{x} \sec (t) d t$.

Solution: $\sec (x)$.
5. Find the derivative of $\int_{x}^{3} e^{-t^{2}} d t$.

Solution: $-e^{-x^{2}}$.
6. Find the derivative of $\int_{0}^{x^{3}} \ln (t) d t$.

Solution: $\ln \left(x^{3}\right) \cdot 3 x^{2}$.
7. Find the derivative of $\int_{2 x}^{x^{2}} \sqrt{t^{2}+t} d t$.

Solution: $\sqrt{\left(x^{2}\right)^{2}+x^{2}} \cdot 2 x-\sqrt{(2 x)^{2}+2 x} \cdot 2=2 x \sqrt{x^{4}+x^{2}}-2 \sqrt{4 x^{2}+2 x}$.

2 U-Substitution/Integration by Parts

8. True FALSE When integrating by parts, choosing different functions for u and $d v$ (assuming both work out), will give different answers.
9. TRUE False It is always good to u sub first in order to simplify the integral.

Solution: This is true and u subbing first will make your life a lot easier.
10. Integrate $\int x\left(3 x^{2}-5\right)^{5} d x$.

Solution: Let $u=3 x^{2}-5$ so $d u=6 x d x$ so $x d x=\frac{d u}{6}$. Replacing the things in the integral gives

$$
\int x\left(3 x^{2}-5\right)^{5} d x=\int u^{5} d u / 6=\frac{u^{6}}{36}+C=\frac{\left(3 x^{2}-5\right)^{6}}{36}+C .
$$

11. Integrate $\int 2 x^{3} e^{x^{2}} d x$.

Solution: Let $u=x^{2}$ so $d u=2 x d x$. So

$$
\int 2 x^{3} e^{x^{2}} d x=\int u e^{u} d u
$$

Now we use integration by parts. Let $r=u$ and $d s=e^{u} d u$ so $s=e^{u}$ and $d r=d u$. We have that

$$
\int u e^{u} d u=u e^{u}-\int e^{u} d u=u e^{u}-e^{u}+C=x^{2} e^{x^{2}}-e^{x^{2}}+C
$$

12. Find $\int_{0}^{1} \sqrt{1-\sqrt{x}} d x$.

Solution: We guess that $u=\sqrt{1-\sqrt{x}}$ and hence $u^{2}=1-\sqrt{x}$ so $\sqrt{x}=1-u^{2}$ and $x=\left(1-u^{2}\right)^{2}=u^{4}-2 u^{2}+1$. Thus, we have that $d x=\left(4 u^{3}-4 u\right) d u$. When $x=0$, then $u=\sqrt{1-0}=1$ and when $x=0$, then $u=\sqrt{1-\sqrt{1}}=0$. Thus

$$
\begin{aligned}
\int_{0}^{1} \sqrt{1-\sqrt{x}} d x=\int_{2}^{0} u\left(4 u^{3}-4 u\right) d u & =\frac{4}{5} u^{5}-\left.\frac{4}{3} u^{3}\right|_{1} ^{0}=(0-0)-\left(4 / 5 \cdot 1^{5}-4 / 3 \cdot 1^{3}\right) \\
& =\frac{4}{3}-\frac{4}{5}
\end{aligned}
$$

13. Find $\int x^{5} e^{x^{3}} d x$.

Solution: We guess that $u=x^{3}$ and so $d u=3 x^{2}$. So $x^{5} e^{x^{3}}=x^{3} / 3 e^{u} d u=u / 3 e^{u} d u$ so

$$
\int x^{5} e^{x^{3}} d x=\int \frac{u e^{u}}{3} d u
$$

We use integration by parts to get that this is equal to

$$
\frac{u e^{u}-e^{u}+C}{3}=\frac{x^{3} e^{x^{3}}-e^{x^{3}}}{3}+C .
$$

14. Integrate $\int 2 x^{3} \cos \left(x^{2}\right) d x$.

Solution: Let $u=\cos \left(x^{2}\right)$ and $d v=2 x^{3} d x$ so $d u=-\sin \left(x^{2}\right) \cdot 2 x d x$ and $v=\frac{x^{4}}{2}$. Then

$$
\int 2 x^{3} \cos \left(x^{2}\right) d x=\frac{x^{4} \cos \left(x^{2}\right)}{2}-\int-\sin \left(x^{2}\right) x^{5} d x
$$

This hasn't been simplified at all so we should try another approach. Instead, first u sub to get $u=x^{2}$ and $d x=2 x$ so $2 x^{3} d x=2 x d x\left(x^{2}\right)=u d u$. Therefore, we get
$\int 2 x^{3} \cos \left(x^{2}\right) d x=\int u \cos (u) d u=u \sin (u)+\cos (u)+C=x^{2} \sin \left(x^{2}\right)+\cos \left(x^{2}\right)+C$.
15. Integrate $\int 2 x \arctan (x) d x$.

Solution: Let $u=\arctan (x)$ and $d v=2 x d x$ so $v=x^{2}$. Then

$$
\begin{gathered}
\int 2 x \arctan (x) d x=x^{2} \arctan (x)-\int \frac{x^{2} d x}{1+x^{2}}=x^{2} \arctan (x)-\int \frac{x^{2}+1}{x^{2}+1}-\frac{1}{x^{2}+1} d x \\
=x^{2} \arctan (x)-x+\arctan (x)+C
\end{gathered}
$$

16. Integrate $\int \frac{\ln \sqrt{x}}{\sqrt{x}} d x$.

Solution: Let $u=\ln (\sqrt{x})$ and $d v=\frac{d x}{\sqrt{x}}=x^{-1 / 2} d x$ so $v=2 x^{1 / 2}=2 \sqrt{x}$. Then by chain rule, we have $d u=\frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} d x=\frac{1}{2 x} d x$. Thus, we have

$$
\int \frac{\ln \sqrt{x}}{\sqrt{x}} d x=2 \sqrt{x} \ln \sqrt{x}-\int 2 \sqrt{x} \cdot \frac{d x}{2 x}=2 \sqrt{x} \ln \sqrt{x}-\int \frac{d x}{\sqrt{x}}=2 \sqrt{x} \ln \sqrt{x}-2 \sqrt{x}+C .
$$

17. Integrate $\int_{0}^{\pi / 2} \sin (x) \cos (x) \sin (\sin (x)) d x$.

Solution: First we u sub with $u=\sin (x)$ so $d u=\cos (x) d x$ and this integral is equal to

$$
\int_{0}^{1} u \sin (u) d u=-\left.u \cos (u)\right|_{0} ^{1}+\int_{0}^{1} \cos (u) d u=-\cos (1)+\sin (1) .
$$

18. Integrate $\int_{0}^{1} 2 x^{3} \sin \left(x^{2}\right) d x$.

Solution: First u sub with $u=x^{2}$ to get

$$
\int_{0}^{1} 2 x^{3} \sin \left(x^{2}\right) d x=\int_{0}^{1} u \sin (u) d u=-\cos (1) \sin (1)
$$

The work is shown above.
19. Integrate $\int_{0}^{1} x^{-1 / 2} \arctan (\sqrt{x}) d x$.

Solution: First we u sub to make this problem easier. Let $u=\sqrt{x}$ so $d u=\frac{1}{2 \sqrt{x}} d x$ so $d x=2 \sqrt{x} d u$. When $x=0$, then $u=\sqrt{0}=0$ and when $x=1$, then $u=\sqrt{1}=1$ so, we have that

$$
\int_{0}^{1} x^{-1 / 2} \arctan (\sqrt{x}) d x=\int_{0}^{1} 2 \arctan (u) d u
$$

Now we can use integration by parts to get $r=\arctan (u)$ and $d t=2 d u$ so $t=2 u$ and $d r=\frac{1}{1+u^{2}}$ so

$$
\int_{0}^{1} 2 \arctan (u) d u=\left.2 u \arctan (u)\right|_{0} ^{1}-\int_{0}^{1} \frac{2 u}{1+u^{2}} d u
$$

Now we can v sub the second integral. Let $v=1+u^{2}$ so $d v=2 u d u$. So, we have that the integral is equal to
$2 \cdot 1 \cdot \arctan (1)-2 \cdot 0 \cdot \arctan (0)-\int_{u=0}^{u=1} \frac{1}{v} d v=2 \arctan (1)-\ln \left|1+u^{2}\right|_{0}^{1}=2 \arctan (1)-\ln 2=\frac{\pi}{2}-\ln 2$.
20. Integrate $\int_{1}^{e^{\pi}} \sin (\ln (x)) d x$.

Solution: First u sub to get that $u=\ln (x)$ so $d u=\frac{1}{x} d x$ and $d x=x d u=e^{u} d u$. The new bounds become $\ln 1$ and $\ln e^{\pi}$ which are 0 and π. Thus, we have that the integral is equal to

$$
\int_{0}^{\pi} e^{u} \cos (u) d u
$$

Now we can integrate by parts with $r=\sin (u)$ and $d t=e^{u} d u$ so $d r=\cos (u) d u$ and $t=e^{u}$ to get

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=\left.e^{u} \sin (u)\right|_{0} ^{\pi}-\int_{0}^{\pi} \cos (u) e^{u} d u=-\int_{0}^{\pi} \cos (u) e^{u} d u
$$

We can integrate by parts again to get that the integral is equal to

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=-\left.\cos (u) e^{u}\right|_{0} ^{\pi}-\int_{0}^{\pi} \sin (u) e^{u} d u
$$

So the integral is equal to

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=\frac{e^{\pi}+e^{0}}{2}=\frac{e^{\pi}+1}{2} .
$$

3 Symmetry

21. Is $f(x)=\frac{x \sin (x)}{x^{2}+4}$ even, odd, or neither?

Solution: Even.

22. Is $f(x)=x^{2} \tan (x)$ even, odd, or neither?

Solution: Odd.
23. Is $f(x)=x e^{x}$ even, odd, or neither?

Solution: Neither.
24. Is $f(x)=e^{x^{2}} \sin (x)$ even, odd, or neither?

Solution: Odd.

4 Numerical Integration

25. True FALSE Numerical approximations are just approximations, and never the exact answer.

Solution: Any approximation for a constant will give the exact answer.
26. TRUE False The second derivative can tell us if the midpoint rule gives an over/under estimate.

Solution: If the second derivative is always positive, then the midpoint rule gives an overestimate, and if the second derivative is always negative, the midpoint rule gives an underestimate.
27. TRUE False Simpson's method will approximate cubics exactly.

Solution: The error bound is given by K_{4}, which is the maximum of the fourth derivative. Since the fourth derivative of cubics is 0 , the error is 0 .
28. True FALSE When calculating K_{1} of $f(x)$ on $[a, b]$, we have that K_{1} is the maximum of $\left|f^{\prime}(a)\right|$ and $\left|f^{\prime}(b)\right|$.

Solution: K_{1} is the maximum of $\left|f^{\prime}(x)\right|$ on the interval $[a, b]$, which may not occur at the endpoints.
29. How many intervals do we need to use to approximate $\int_{1}^{4} \ln x d x$ within $0.001=10^{-3}$ using Simpson's rule? Approximate it using Simpson's rule and $n=4$.

Solution: We have that $E_{S}=\frac{K_{4}(b-a)^{5}}{180 n^{4}}$ and $(\ln x)^{(4)}=\frac{-6}{x^{4}}$ so $10^{-3}=\frac{6(3)^{5}}{180 n^{4}}$ so $n \geq$ 9.49. So the minimum number is $n=10$.

For $n=4$, we have $\Delta x=\frac{4-1}{4}=\frac{3}{4}$ and our subintervals are $[1,1.75],[1.75,2.5],[2.5,3.25],[3.25,4]$.
Simpson's rule gives us

$$
\frac{3}{4 \cdot 6}(\ln 1+4 \ln 1.75+2 \ln 2.5+4 \ln 3.25+\ln 4)
$$

30. How many intervals do we need to use to approximate $\int_{-3}^{-1} 1 / x^{2} d x$ within $0.001=10^{-3}$ using the midpoint rule? Approximate it using the midpoint rule and $n=4$.

Solution: We have that $E_{M}=\frac{K_{2}(b-a)^{3}}{24 n^{2}}$ and $\left(1 / x^{2}\right)^{(2)}=\frac{6}{x^{4}}$ so $10^{-3} \geq \frac{6(2)^{3}}{24 n^{2}}$ so $n \geq$ 44.7. So the minimum number is $n=45$.
For $n=4$, we have $\Delta x=\frac{-1-(-3)}{3}=\frac{2}{4}$ and our subintervals are $[-3,-2.5],[-2.5,-2],[-2,-1.5],[-1.5$ Midpoint rule gives us

$$
\frac{1}{2}\left(1 /(-2.75)^{2}+1 /(-2.25)^{2}+1 /(-1.75)^{2}+1 /(-1.25)^{2}\right)
$$

31. How many intervals do we need to use to approximate $\int_{0}^{4} e^{x} d x$ within $0.001=10^{-3}$ using the trapezoid rule? Approximate it using the trapezoid rule and $n=4$.

Solution: We have that $E_{T}=\frac{K_{2}(b-a)^{3}}{12 n^{2}}$ and $\left(e^{x}\right)^{(2)}=e^{x}$ so $10^{-3} \geq \frac{e^{4}(4)^{3}}{12 n^{2}}$ so $n \geq 17.06$. So the minimum number is $n=18$.

For $n=4$, we have $\Delta x=\frac{4-0}{4}=1$ and our subintervals are $[0,1],[1,2],[2,3],[3,4]$. Trapezoid rule gives us

$$
\frac{1}{2}\left(e^{0}+2 e^{1}+2 e^{2}+2 e^{3}+e^{4}\right)
$$

32. Approximate the integral $\int_{1}^{3} \frac{d x}{x}$ with $n=2$ intervals using the different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson's).

Solution: Using the methods in order are

$$
\begin{gathered}
\frac{1}{1} \cdot 1+\frac{1}{2} \cdot 1 \\
\frac{1}{2} \cdot 1+\frac{1}{3} \cdot 1 \\
\frac{1}{1.5} \cdot 1+\frac{1}{2.5} \cdot 1 \\
\frac{1}{2}\left[\frac{1}{1}+2 \cdot \frac{1}{2}+\frac{1}{3}\right] \\
\frac{1}{6}\left[\frac{1}{1}+4 \cdot \frac{1}{2}+\frac{1}{3}\right]
\end{gathered}
$$

33. What is the smallest value of n needed to ensure that our numerical approximation method for $\int_{1}^{3} d x / x$ is within $0.0001=10^{-4}$ using the different methods?

Solution: In order to do this, you need to set the error bound less than equal to this bound.

$$
\begin{aligned}
& E_{L}=\frac{K_{1}(b-a)^{2}}{2 n}=\frac{1(3-1)^{2}}{2 n} \leq 10^{-4} \Longrightarrow n \geq 2 \cdot 10^{4} . \\
& E_{R}=\frac{K_{1}(b-a)^{2}}{2 n}=\frac{1(3-1)^{2}}{2 n} \leq 10^{-4} \Longrightarrow n \geq 2 \cdot 10^{4} . \\
& E_{M}=\frac{K_{2}(b-a)^{3}}{24 n^{2}}=\frac{2(3-1)^{2}}{24 n^{2}} \leq 10^{-4} \Longrightarrow n \geq \frac{100}{\sqrt{3}} . \\
& E_{T}=\frac{K_{2}(b-a)^{3}}{12 n^{2}}=\frac{2(3-1)^{2}}{12 n^{2}} \leq 10^{-4} \Longrightarrow n \geq \frac{100 \sqrt{2}}{\sqrt{3}} . \\
& E_{S}=\frac{K_{4}(b-a)^{5}}{180 n^{4}}=\frac{24(3-1)^{5}}{180 n^{4}} \leq 10^{-4} \Longrightarrow n \geq \frac{20 \sqrt{2}}{\sqrt[4]{15}} .
\end{aligned}
$$

5 Improper Integrals

34. True FALSE We can compare an integral to $\int_{1}^{\infty} 1 / \sqrt{x} d x$ in order to show it converges.

Solution: The given integral diverges and hence cannot be used to show an integral converges.
35. True FALSE We can compare an integral to $\int_{1}^{\infty} 1 / x^{2} d x$ to show it diverges.

Solution: The given integral converges and hence cannot be used to show that another integral diverges.
36. True FALSE Since $x<x+1$, we have that $\infty=\int_{1}^{\infty} \frac{1}{x} d x \leq \int_{1}^{\infty} \frac{1}{x+1} d x$ so the latter integral diverges.

Solution: When we take reciprocals, we need to switch the sign so we actually get $\infty \int_{1}^{\infty} \frac{1}{x} d x \geq \int_{1}^{\infty} \frac{1}{x+1} d x$ so we don't have any information on if the latter integral converges or not. It does in fact diverge but we need to show that a different way.
37. Calculate $\int_{-\infty}^{\infty} \frac{1}{1+(x-1)^{3}} d x$.

Solution: We have to split up the integral first but it doesn't matter where we do so. We choose $x=1$ for simplicity.

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{1}{1+(x-1)^{2}} d x=\int_{-\infty}^{1} \frac{1}{1+(x-1)^{2}} d x+\int_{1}^{\infty} \frac{1}{1+(x-1)^{2}} d x \\
=\lim _{t \rightarrow-\infty} \int_{t}^{1} \frac{1}{1+(x-1)^{2}} d x+\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{1}{1+(x-1)^{2}} d x=\left.\lim _{t \rightarrow-\infty} \arctan (x-1)\right|_{t} ^{1}+\left.\lim _{r \rightarrow \infty} \arctan (x-1)\right|_{1} ^{r} \\
=\arctan (0)-\arctan (-\infty)+\arctan (\infty)-\arctan (0)=\pi / 2-(-\pi / 2)=\pi .
\end{gathered}
$$

38. Calculate $\int_{1}^{\infty} x e^{-2 x} d x$.

Solution: First we calculate that

$$
\int x e^{-2 x} d x=x \frac{e^{-2 x}}{-2}-\int \frac{e^{-2 x}}{-2} d x=\frac{-x e^{-2 x}}{2}-\frac{e^{-2 x}}{4}+C
$$

by integration by parts. Thus, we have that

$$
\begin{gathered}
\int_{1}^{\infty} x e^{-2 x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-2 x} d x=\lim _{t \rightarrow \infty}\left[\frac{-x e^{-2 x}}{2}-\left.\frac{e^{-2 x}}{4}\right|_{1} ^{t}\right. \\
=\lim _{t \rightarrow \infty}\left[\frac{-t e^{-2 t}}{2}-\frac{e^{-2 t}}{4}+\frac{e^{-2}}{2}+\frac{e^{-2}}{4}\right]=\frac{e^{-2}}{2}+\frac{e^{-2}}{4} .
\end{gathered}
$$

This is because we can use L'Hopital's rule to calculate that $\lim _{t \rightarrow \infty} t e^{-t}=0$.
39. Calculate $\int_{1}^{\infty} \frac{2 x}{1+x^{2}} d x$.

Solution: We have that

$$
\int_{1}^{\infty} \frac{2 x}{1+x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{2 x}{1+x^{2}} d x=\left.\lim _{t \rightarrow \infty} \ln \left(1+x^{2}\right)\right|_{1} ^{t}=\infty .
$$

40. Does $\int_{3}^{\infty} \frac{1}{\sqrt{x} \ln (x)}$ converge?

Solution: We know that for $x \geq 3$ that $x \geq \sqrt{x}$ and so $x \ln (x) \geq \sqrt{x} \ln (x)$ so $\frac{1}{x \ln (x)} \leq \frac{1}{\sqrt{x} \ln (x)}$ so

$$
\int_{3}^{\infty} \frac{1}{\sqrt{x} \ln (x)} \geq \int_{3}^{\infty} \frac{1}{x \ln (x)} d x=\infty
$$

So this integral diverges.
41. Does $\int_{1}^{\infty} \frac{2 x+2 x e^{-x}}{1+x^{2}} d x$ converge?

Solution: We know that $1+e^{-x} \geq 1$ and so $2 x\left(1+e^{-x}\right) \geq 2 x$ and so $\frac{2 x+2 x e^{-x}}{1+x^{2}} \geq \frac{2 x}{1+x^{2}}$ and

$$
\int_{1}^{\infty} \frac{2 x+2 x e^{-x}}{1+x^{2}} d x \geq \int_{1}^{\infty} \frac{2 x}{1+x^{2}} d x=\infty
$$

So, the integral diverges.

6 Partial Fractions

42. Integrate $\int \frac{5 x+17}{x^{2}+2 x-15} d x$.

Solution: We have that $\frac{5 x+17}{x^{2}+2 x-15}=\frac{5 x+17}{(x-3)(x+5)}=\frac{A}{x-3}+\frac{B}{x+5}$. Multiplying gives $5 x+$ $17=A(x+5)+B(x-3)$ and plugging in $x=3$ and $x=-5$ gives $32=8 A$ and $-8=-8 B$ respectively or $A=4, B=1$ and hence

$$
\int \frac{5 x+17}{x^{2}+2 x-15} d x=\int \frac{4}{x-3}+\frac{1}{x+5} d x=4 \ln |x-3|+\ln |x+5|+C .
$$

43. Integrate $\int \frac{2 x^{3}-12 x^{2}+28 x-23}{(x-2)^{2}(x-1)^{2}} d x$.

Solution: We set $\frac{2 x^{3}-12 x^{2}+28 x-23}{(x-2)^{2}(x-1)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}$. Multiplying through and solving gives us $A=0, B=-5, C=2, D=1$. Thus, we have

$$
\begin{gathered}
\int \frac{2 x^{3}-12 x^{2}+28 x-23}{(x-2)^{2}(x-1)^{2}} d x=\int \frac{2}{x-2}+\frac{1}{(x-2)^{2}}-\frac{5}{(x-1)^{2}} d x \\
=2 \ln |x-2|-\frac{1}{x-2}+\frac{5}{x-1}+C .
\end{gathered}
$$

44. Set up the partial fraction decomposition of $\frac{3 x^{2}+1}{(x-1)\left(x^{2}+4\right)^{2}\left(x^{2}+2 x+2\right)^{2}}$ (you don't have to solve for the coefficients).

Solution: Since $x^{2}+2 x+2$ is irreducible, we have
$\frac{3 x^{2}+1}{(x-1)\left(x^{2}+4\right)^{2}\left(x^{2}+2 x+2\right)^{2}}=\frac{A}{x-1}++\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}}+\frac{F x+G}{x^{2}+2 x+2}+\frac{H x+J}{\left(x^{2}+2 x+2\right)^{2}}$.

